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The Constraint Force Algorithm, as originally described by Fijany
et al., calculates the forward dynamics of a system comprising N rigid
bodies connected together in an unbranched chain with joints from a
restricted class of joint types. It was designed for parallel calculation
of the dynamics, and achieves O(log V) time complexity on O(N)
processors. This paper presents a new formulation of the Constraint
Force Algorithm that corrects a major limitation in the original, and
sheds new light on the relationship between it and other dynamics
algorithms. The new version is applicable to systems with any type
of joint, floating bases, and short branches off the main chain. It is
obtained using a new technique for analysing constrained rigid-body
systems by means of a change of basis in a dual system of vector

spaces. This new technique is also described.

1 Introduction

The Constraint Force Algorithm (CFA) was the first algorithm to calculate
the forward dynamics of an N-body robot manipulator in O(log N) time on
a parallel computer with O(N) processors. The original version, as described

in [1], was applicable to a system comprising a fixed base and N rigid bodies,




connected together in an unbranched chain by joints from a restricted class
of joint types. This was subsequently extended to floating bases in [2].

This paper presents a new formulation of the CFA that corrects a major
limitation in the original formulation, and sheds new light on the relation-
ship between the CFA and other dynamics algorithms. It also presents an
improved method for dealing with floating bases that is easier and more effi-
cient than the method described in [2]; and it extends the CFA to branched
kinematic trees consisting of a single main chain and any number of short
side-branches. Floating bases are implemented by means of a 6-DoF joint,
and short branches are implemented using articulated-body techniques.

The original formulation, as described in [1], includes an incorrect usage
of orthogonal complements. Specifically, the inner product that is used to
define orthogonality is non-invariant and dimensionally inconsistent. See [3]
for a full explanation of the problem. In [1], the problem is finessed by
observing that if the algorithm is restricted to certain types of joint then it
is possible to formulate the affected equations (Egs. 6 and 7) in such a way
that the coefficients of the dimensionally-inconsistent terms are zero. The
new formulation removes the source of the problem by avoiding orthogonal

complements altogether. The immediate result is to remove all restrictions




on joint type.

The new formulation uses a ‘change of basis’ (CoB) technique that has
not been previously published, so a brief description is included in this paper.
The method can be summarized as follows: given the equation of motion of
a rigid-body system in the form of a linear equation between acceleration
and force, plus an acceleration constraint to be imposed on the system, it is
possible to construct new bases on the force and acceleration vector spaces
such that the equation of motion is decoupled into two independent sub-
systems, one of which is completely immobilized by the given constraint,
while the other is completely unconstrained. Because the two subsystems
are independent, a constraint imposed on one has no effect on the other.

This technique can be used both to derive the CFA and to derive con-
ventional dynamics algorithms; and it reveals a simple relationship between
the two via an equation that can be paraphrased as ‘constrained dynamics =
unconstrained dynamics — immobilized dynamics’. Conventional algorithms
are derived from the LHS of this equation, and the CFA from the RHS.

The CoB technique does, of course, build on much existing work. The
idea of using separate vector spaces for motion and force vectors originates in

analytical mechanics; and the idea of nsing separate motion and force spaces




to describe the freedom and constraint spaces of a robot in contact with
its environment has become widespread in the area of hybrid motion/force
control [4, 5, 6]. Earlier works in this area tended to use a single space
containing both types of vector, and some of them suffer from an incorrect
use of orthogonal complements; but a correct version of the single-space
analysis can be found in [7, 8]. The argument in favour of two spaces is put
in [5]. These works partly inspired the present work.

The method of constructing subspaces of freedom and constraint is also
not new. Although the details differ in each case, the same basic method is
apparent in {9, 7. 8, 4, 5, 6]. The method presented here is slightly more gen-
eral in that we do not require the parent spaces to have the special properties
of twists and wrenches, do not require the dimension to be 6, and place no
limit on the number of bodies that are subject to constraints.

On the other hand, the particular decoupling presented in this paper is
quite different from that presented in [6], which is done using eigenvalues and
eigenvectors, and solves a different problem.

The rest of this paper is organized into three sections. The first describes
the CoB technique in general terms; the second shows how it is applied

to constrained rigid-body dynamics; and the third describes the new CFA
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formulation.

2 The Change-of-Basis Technique

Let U and V be two n-dimensional vector spaces with a scalar product defined
between them. This product t.akes one argument from each space; so, ifu € U
and v € V. then u-v is defined, but u-u and v-v are not. The expression v-u
is permitted as a synonym for u-v. A mathematical structure comprising
these two spaces and their scalar product is called a system of dual vector
spaces, and may be denoted (U, V,-).

If u-v = 0 then u and v are said to be reciprocal. They cannot be
said to be orthogonal, because orthogonality is a relationship defined be-
tween members of the same space. The term ‘reciprocal’ has been borrowed
from screw theory in order to avoid the term ‘orthogonal’; but note that its
meaning here differs from its usual meaning in screw theory, where it has
a geometrical interpretation based on the special properties of screws, and
where concepts like self-reciprocity are defined.

Two subspaces, S C U and T C V| are reciprocal if every element of S is

reciprocal to every element of T, and this relationship is denoted S L 7. In



general, infinitely many spaces T satisfy S L T for a given S; but the space
of largest dimension is unique, and is called the reciprocal complement of .5,

denoted S+. An alternative definition is
St={v|VueS u-v=0}CV

The sum of the dimensions of S and S+ is n.
Let us now introduce some baseson U and V. Let {d;,...,d,} be an arbi-
trary basis on U. For each such basis, there exists a unique basis {ey,...,e,}

on V with the property

1 ifi=j
d;-e; =
0 otherwise
A pair of bases that satisfy this condition is called a reciprocal basis-pair. If
[u] and [v] are n x 1 matrices of coordinates representing u and v in bases
that form a reciprocal pair then u - v = [u]” [v].

The reciprocal basis-pair plays a role similar to that of an orthonormal
basis in an inner product space, but there are important differences. In
particular, there are n? freedoms available in choosing a reciprocal basis-pair
in (U, V,-), but only n(n—1)/2 freedoms available in choosing an orthonormal

basis on an n-dimensional inner product space. These extra freedoms are
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-bb-error = =
Figure 1: Orthonormal basis (a) vs. reciprocal basis-pair (b).

essential to the success of the CoB technique.

The difference is illustrated by the 2-D example shown in Figure 1. The
orthonormal basis (a) consisté of two unit vectors at right angles. As there is
no freedom to alter the lengths of the vectors or the angle between them, the
only remaining freedom is the overall orientation of the basis. On the other
hand, the reciprocal basis-pair (b) consists of any two linearly-independent
vectors in one space (e.g. d; and d3) plus two vectors in the other space that
are uniquely determined by the reciprocity conditions. In this case, there
are four freedoms available. Although the concepts of magnitude and angle
are not, in general, defined on (U,V, ), we have used them as visual cues
to illustrate the reciprocity conditions: dj is shown at right angles to e; to
indicate d; - e; = 0, and so on.

From here on, we switch from using abstract vectors (also known as
coordinate-free vectors) to using coordinate-based representations of vectors,
and assume that a reciprocal basis-pair is being used. To avoid a messy

change of notation (e.g. from u to [u]). all symbols denoting vectors will




now refer to coordinate vectors, except where explicitly stated to the con-
trary.

Once we have coordinate vectors, we can define matrices to represent
subspaces. If S is an r-dimensional subspace of U then it can be represented
by any n X r matrix S satisfying S = Range(S). If Sq is one such matrix then
all others can be expressed in the form S = Sg A where A is any nonsingular
r x r matrix. The columns of S can be thought of as a set of basis vectors
on S; and any element of S can be expressed in the form S a, where « is an
r-dimensional vector of coordinates. If two subspaces S and T satisfy S L T
then any two matrices representing them satisfy ST T = 0.

Let B; and B, be two reciprocal basis-pairs in (U, V), and let u;, uy,
v, and vy be representations of the abstract vectors u and v in B; and B,.

The transformation rules for changes of basis are
-1
Ll2=XUlll, u; ZXU Uy,

-1
vy =Xyvy, vi=Xp vy,

where X is a coordinate transformation matrix that performs the change
of basis in U, and Xy does the same in V. The abstract scalar product,

u - v, is inherently invariant with respect to changes of basis; so we know




that ul vi = ul' v, for all B, and B,, hence

With two vector spaces, there are four types of linear mapping that we
can define: U +— U, U — V, V — U and V — V. Each has its own
transformation rule, which is easily deduced from the corresponding rules for

vectors:

U—U: A2=XUA1X[,1
U— V. B2=XvB1X51
VisU: C=XyC Xt

Vi—V: Dy=Xy D X3L

Let us now move on to the CoB technique itself. Suppose we are given a
symmetric, positive-definite mapping M : U — V and an arbitrary subspace
Sy Cc U. It is always possible to find three additional subspaces, Sz, T} and

T,, satisfying the following equations:
51@52=U, Tl@TQ:V,
T, =MS;, Tr,=MS, (1)

S} L Tg, T1 L SQ,
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where @ means direct sum and M S is the image of S| under the mapping
M. The three subspaces are uniquely determined by the problem, but not
their matrix representations. In fact, there are enough additional freedoms
in the matrix representations to allow us to impose the following additional

constraint:

[S1 So)T [T T2] = Loxa-
With this extra condition, the solution is
T, = S,
T, = MS, (STMS,;) !, (2)

Sy =M1 T, (TIM1Ty) L.

There is still a degree of arbitrariness in calculating Ty from S;, but T is
now uniquely determined, and S; is unique for a given T,. Incidentally, it
is not necessary to start with S;; we could have started with any one of the
other three spaces.

In solving this problem, we have in effect defined a new reciprocal basis-
pair with basis vectors s; in U and t; in V', where s; and t; are the it" columns
of the n X n matrices [S; Sg] and [T, Ty respectively. This basis-pair has

two special properties:
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1. the first r basis vectors in U span the given subspace Sy, and

2. the given linear mapping is block-diagonal, comprising an r x r block

that maps S; to 77 and an (n—r) x (n—r) block that maps S; to Ts.

The first property is obvious. To see the second, simply transform M to the

special basis-pair. The coordinate transformation matrices are
Xy =[T; T, Xy =[SS)]",
Xyt =1[818y, X' =[T; Ty,

and the value of M in the special basis-pair is (using Eq. 2)

STMS; 0
Xy MXp! =
0 (TIM-'T,)"!

If we separate the two blocks and transform the whole equation back to

the original basis-pair, the result is

STMS; 0 0 0
M = X;l + Xy
0 o 0 (TITM~'Ty)!

=MS,(STMS,)"'STM + T2 (TiM~'T,) "' TT.

This equation expresses M as the sum of two components: one that maps
Si to Ty and one that maps S, to Th. The equivalent expression for M~} is

12
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obtained by pre- and post-multiplying this equation by M™%

M~ =8, (STMS;) 'ST + M~ Ty (TIM'Ty) ' TIT ML (3)

3 Applying CoB to Constrained Dynamics

Now let us apply the CoB technique to the dynamics of a physical system.
Sﬁppose we are given an unconstrained system for which the equation of
motion is u = M~!v, where u € U is the (unknown) output variable and
v € V the (known) input variable; and suppose this system is subjected to
a known constraint in the form u € 5 C U. The equation of motion of the

constrained system is

u=M""1(v+v,),
where v, € V is the unknown, constraint-maintaining input, which is as-

sumed to obey the principle of virtual work. Transforming this equation to

the special basis-pair produces

23} B (SlTMsl)-l 0 B N Y1

(o) 0 TIM™'T, B, Y2
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where

23] B i
=Xy u, = Xy vV, =Xy V.

(83} Bs Y2

Because the system matrix is block-diagonal, this equation actually repre-

sents two independent subsystems:

o = (STMS) ™ (B; +71), (4)
ay = TEM™Ty (B, +7,)- (5)
The given constraint translates into az = 0, so the subsystem in Eq. 5

is completely immobilized; and the principle of virtual work requires that
ST v, = 0, which implies «v; = 0, so the subsystem in Eq. 4 is independent of

the constraint. The equation of motion of the constrained system is therefore
a; = (STMS))™' 8, (6)

in the coordinate system defined by S; and T}, or
u=S;(8TMs,)'sTv (7)

in the original basis-pair.
The matrix expression on the RHS of this equation is the unconstrained,
or active, component of M~!: the component that maps T} to Sy, and that

14



accounts for the dynamics of the constrained system. Eq. 3 provides us with

an alternative expression for this component:
S, (STMS) ST =M —M I Ty (TIM Ty T TI ML ()

In other words, the system matrix of a constrained dynamical system is the
difference between the system matrix of the unconstrained system and the
matrix describing the immobilized dynamics. (Note that this is a general
result: there is no assumption at this stage that the physical system is a
rigid-body system.)

We can use Eq. 8 to derive alternative expressions for Egs. 6 and 7.

Applied to Eq. 7, the result is
u= (M1 -MI1T,(TIMITy) ' T M) v. (9)

An alternative expression for Eq. 6 can be obtained by premultiplying both

sides of Eq. 9 by TT, resulting in
o =TT (M =M IT, (TIM ' Ty) ' TS MY T, By

but a more useful version can be obtained by applying a more general map-
ping. Consider the set of subspaces T} that satisfy T|®7T> = V. For each such
subspace, there is a unique matrix T that satisfies both Range(T}) = 77 and

L5



STT{ = 1; and any vector v = T B, + T2 3, can be decomposed uniquely
1nto

v=T8,+T:08;
If T) = T then T} = T, and B, = 3,, otherwise 3; # 3,. Substituting this

expression for v into Eq. 9 and premultiplying both sides by T’IT produces
a =T (M -M T (TIM'T) ' TIM YT, 8,.  (10)

The point of this exercise is that there exist values of T that are much easier
to calculate than T,.

As we shall see in the next section, this equation leads to the CFA, whereas
Eq. 6 leads to the Newton-Euler factorization of the mass matrix [10], which

is characteristic of standard dynamics algorithms.

4 The Constraint Force Algorithm

The CFA, like many other dynamics algorithms, uses an inverse dynamics
function to calculate all of the force terms that depend only on position and
velocity variables and other known quantities. This is a standard technique,
and involves calling the inverse dynamics function with the acceleration vec-
tor set to zero, and subtracting the result from the input force vector [11].
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Having already compensated for these effects, we are free to simplify the
system by ignoring gravity, setting all velocities to zero, and so on.
Given a system of NV independent rigid bodies at rest, the equation of

motion of the system can be expressed as a set of equations

a; =I7'f, i=1...N, (11)

)

where a; € M® is the spatial acceleration of body i, f; € F® is the spatial
force applied to body i. and I, : M® — F® is the spatial inertia of body 3.
Explicit expressions for a;, f; and I;, and various other spatial quantities,
in terms of 3-D linear and angular vectors and matrices can be found in
[9, 1, 10] and various other sources; but note that the vectors we use here
require that the 3-D linear-component vector be placed either consistently
above or consistently below the 3-D angular-component vector. This is at
variance with the arrangement in [9] and certain other works, where the line-
vector component (angular motion or linear force) is placed on top and the
free-vector component below.

The appearance of the two spaces M® and F® is an important mathemat-
ical detail. They contain the motion-type and force-type spatial vectors, re-

spectively, and they form a dual system (M® F® ) with the reciprocal scalar
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product. This formal separation of vectors into distinct force and motion
spaces is the first step in applying the CoB technique.

We avoid using the terms ‘twist’ and ‘wrench’ to describe these vectors
because there is no need for them actually to be twists or wrenches. They
could just as easily be vectors of generalized accelerations and forces. We
use only the dual-system property, not any of the special properties of twists
and wrenches.

The individual equations in Eq. 11 can be combined into a single com-

posite equation that describes the whole system:
a=I"f (12)

where f = [f7,... f5]T € F®, a = [af ... aL]"T € MY and I = diag(L;) :
MSN s F8¥  The spaces M®Y and F6V are Cartesian products of N lots of
MS and F®; and they form a dual system, (MY F5¥ .} which enables the
CoB technique to be applied globally to the whole system.

The equation of motion of a robot mechanisin can be obtained by sub-
jecting the free-body system to a kinematic constraint that models the effects
of the joints. Let the robot mechanism consist of N movable links numbered

1... N from base to tip. one fixed base link numbered 0, and N joints num-
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bered 1... /N such that joint ¢ connects from link ¢ — 1 to link <. Let h; and
§; be the motion axis (or subspace) and acceleration variable of joint ¢, and
let 7; be the active joint force at joint ¢ (after subtraction of the inverse-
dynamics force). As all velocity terms are already accounted for, the bodies
are taken to be at rest.

Each joint imposes an acceleration constraint of the form
a; —a;-1 = h; q;,

and the active joint forces are related to the link forces by

N
. =hlf, =h!l (3 f),

j=i
where f; is the total force transmitted from link ¢ — 1 to link ¢ through joint ¢
(so £;; = f; + £,:,1). These equations can be combined into two system-wide
equations

Pa=Hagq, (13)

T=HTPTf, (14)

where H = diag(h,) : M* —~ M, g = [a].... .q5IT e M, 7 =[], 7§|7
F* and n is the degree of freedom of the robot mechanism. The matrices

P : M i M and P-7 : FO¥ — FSV gerve to propagate information
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between links, and are given by

1 O 0 ( 7
1 1 1
-1 1
0 1 1
P=1| o , PT=
10
0 OIJ
0O --- 0 -11 )

Each block is a 6 x 6 zero, identity or negative identity matrix. P corre-
sponds to PT in [1] (not P, as might at first appear, because of the reversed
element-numbering scheme) and P~! to ¢* in [10]. The apparent differences
between P and these other matrices is simply an artifact of our choice of
coordinates: the equations in this section are expressed, for simplicity, in
absolute coordinates. Transforms into link coordinates can easily be added
at a later stage.

To apply the CoB technique to this system, use
S;=P'H, T,=P'H'

where H' = diag(h;") and the matrices h; represent the spaces of possible

constraint forces for each joint. The resulting equation of motion is

a=P 'HHPTIP'H)'H'PTf
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or, in terms of joint force and acceleration,
= (H'PTIP'H) ! 7. (15)

On comparing Eq. 15 with Eq. 3 in [10], it can be seen that H'P~7IP~'H
is simply the standard, Newton-Euler factorization of the joint-space mass
matrix, which leads directly to the Newton-Euler algorithm for inverse dy-
namics, and indirectly to several O(N?®) algorithms for forward dynamics,
including the composite-rigid-body, or Walker-Orin algorithm. The CF fac-
torization of the mass matrix appears in the alternative form of Eq. 15, which

is obtained via Eq. 10:
=T (7' =TT (T3 ) TL 1Y) T 7, (16)
where. for computational reasons,
T, =P Iy H(HItH)™'

and Iy : M8V s FBN is an arbitrary, block-diagonal SPD mapping. It
is permissible to equate Ix with I; but a better choice for computational
purposes is whichever mapping happens to be the identity matrix in the

current basis-pair.




Although Eq. 16 is more complicated than Eq. 15, and involves more
calculations, every step in the evaluation of Eq. 16 can be accomplished in
O(log(N)) time or better on a computer with O(N) processors. The same is
not true of Eq. 15. The details are explained in [1].

Equation 16 is the correct version of the CFA. On comparing it with
Eq. 22 in [1], equating W in that equation with H* here, the only difference
is the appearance of P’H in that equation where T appears here. This
difference can be traced back to Eqs. 6 and 7 in [1], where the notion of
orthogonal complements is used incorrectly (see [3]).

This version is dimensionally correct and invariant with respect to changes
of basis (provided you remember to use the correct transformation rule for
each quantity); and it works for any type of joint. It also works for floating
bases. since a floating-base system can be simulated by a fixed-base system
with a 6-DoF joint between the fixed base and the first moving body, which is
the floating base. This approach to floating bases is easier and more efficient
than the method described in [2]. Note that h:* has dimensions 6x0 for a
6-DoF joint, which means that it contributes six rows and zero columns to
H*, and all of the elements on those six rows are zero.

The CFA can be extended to allow short side branches by replacing the

o
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original set of N independent rigid bodies with a set of N independent 1-
handle articulated bodies [9]. No part of the CFA needs to be changed, but

two additional calculations are required:

1. After the inverse-dynamics calculation, but before the first step of CFA,
run the articulated-body algorithm (ABA) in parallel on each of the
articulated bodies, up to the point where all the articulated-body iner-
tias have been calculated (i.e., the end of step 1 in [9], or up to Eq. 39

or Eq. 46 in [12]).

2. After the last step of CFA, use the known spatial accelerations of the

bodies on the main chain to finish off the ABA calculation.

If the lengths of the side chains are no greater than O(log N), then this ad-
ditional calculation does not affect the asymptotic time complexity of the
CFA. Indeed, the overall efficiency of this extended CFA, measured in terms
of calculations per body, is actually slightly better than that of basic CFA
because the ABA has a lower calculations-per-body count than CFA. No-
tice also that the extended CFA is capable of calculating the dynamics of a
system containing O(N log N) bodies in O(log N) time on O(N) processors,
provided it has the right connectivity.
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5 Conclusion

This paper has presented a new technique for analysing constrained rigid-
body systems by means of a change of basis in a dual system of vector spaces,
and a new formulation of the CFA using this technique. This new formu-
lation is invariant, dimensioﬁally-correct, and works for any type of joint,
including the 6-DoF joint that is used to model floating-base systems. It also
caters for short, O(log V)-length side branches off the main chain, which are
implemented using articulated-body equations. Finally, the new formulation
shows that the relationship between the CFA and conventional dynamics al-
gorithms is explained by an equation that can be paraphrased as follows:
‘constrained dynamics = unconstrained dynamics — immobilized dynamics’.
Conventional algorithms are derived from the LHS of this equation, and the

CFA from the RHS.
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